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Abstract

In this paper, I describe the computer simulations that I have performed to critically examine the Lauritzen–Hoffman (LH) and the Sadler–
Gilmer (SG) theories of polymer crystallization. In particular, I have computed the free energy profile for nucleation of a new crystalline
layer on the growth face to compare with that assumed by the LH theory, I have analysed the mechanism of thickness selection in a multi-
pathway model in which some of the constraints in the LH theory are relaxed, and I have re-examined the model used by SG. These
investigations have lead to a mechanism of thickness selection of lamellar polymer crystals that differs from the two theories that I set out to
examine.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In 1957 Keller reported that polyethylene formed chain-
folded lamellar crystals from solution [1]. This discovery
was followed by the confirmation of the generality of this
morphology—lamellar crystals are formed on crystalliza-
tion, from both the solution and the melt [2] for a wide
variety of polymers—and the basic phenomenological
laws describing such properties as the thickness and growth
rate [3,4]. In particular, the crystal thickness,l, has been
found to be inversely proportional to the supercooling
[5,6], which is interpreted as resulting froml being slightly
larger thanlmin, the minimum thickness for which a lamellar
crystal is stable with respect to the solution or melt, i.e.l �
lmin 1 dl; whered l is small.

Surprisingly, however, no theoretical consensus has yet
been reached as to the mechanism of this seemingly simple
behaviour. In particular, two of the most well-known
theories—the Lauritzen–Hoffman (LH) surface nucleation
theory [7–9] and the Sadler–Gilmer (SG) entropic barrier
model [10–13]—present very different explanations of
thickness selection [14]. Of course, in such a situation,
one would like to determine which of the theories, if any,
is closest to the truth. There are two aspects to such a task.
Firstly, the predictions of the theories should be critically

compared with experimental results. In the case of polymer
crystallization both the LH and SG theories are able to
reproduce the basic behaviour: the observed temperature
dependence of the thickness and the growth rate. Addition-
ally, Hoffman and coworkers have further developed the
surface nucleation approach in order to explain some of
the more detailed behaviour of crystallizing polymers, for
example the regime transitions in the growth rate [9].
However, this comparison does not conclusively favour
one of the theories. This situation illustrates the fact that
although consistency with experiment is an important first
hurdle for any theory, it does not automatically imply the
correctness of a theory. There may be a number of different
ways of generating a particular experimental law. Further-
more, the number of parameters in a complex theory may
give the theory sufficient plasticity to fit a wide variety of
scenarios.

Secondly, it is important that the assumptions of a theory,
particularly those about the microscopic mechanisms, are
critically examined. However, in the case of polymer crys-
tallization this task is very difficult to achieve experimen-
tally. By addressing this gap, computer simulations can
potentially play an important role in this field. Such simula-
tions could range from examining simple models to
performing realistic atomistic simulations of the crystal
growth process. The former could allow the effects of relax-
ing some of the theoretical assumptions to be determined
and the latter could provide a detailed molecular picture of
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the growth process. Indeed, there has been an increasing
number of computational studies pursuing these aims
[15–19]. In this paper I review my efforts in this direction
[20–24] and hope to illustrate the positive role that
computer simulations can play in helping to understand
polymer crystallization. In particular, the aim of my simula-
tions has been to critically examine the LH and SG theories.

2. Free energy profiles

In the LH theory the growth of a new layer is modelled as
the deposition of a succession of stems (straight sections of
the chain that traverse the growth face) along the growth
face from an initial nucleus, where the length of each stem is
the same as the thickness of the lamella. The inset of Fig. 1
illustrates the geometry of this mechanism. To analyse the
kinetics of growth, a thermodynamic description of the
nucleation and growth of a new layer is first required. The
free energy of a configuration withNstem complete stems is
taken to be

A�Nstem� � 2bls 1 2�Nstem2 1�abs f 2 NstemablDF; �1�
wherea and b are, respectively, the width and depth of a
stem,l is the thickness of the lamella,s is the lateral surface
free energy,s f is the fold surface free energy, andDF is the
free energy of crystallization. The first term corresponds to
the free energy of the two lateral surfaces created on the
deposition of the first stem and is proportional tol. The
second term is the free energy of the new fold surface
created on the deposition of subsequent stems. It is then
assumed that at the barrier between configurations with
different numbers of stems all the new surfaces have been
created and that a fractionc of the free energy of

crystallization is released. This then gives the LH free
energy profile that is illustrated in Fig. 1.

From this free energy profile,S(l), the flux over the
barrier, can be obtained. The observed crystal thickness is
then taken to correspond to the average

�l �
Z∞

l min

lS�l� dl: �2�

This average thickness is close to the value ofl at the
maximum in S(l), which in turn is close to, but slightly
above lmin, thus reproducing the observed behaviour ofl.
The maximum inS(l) is the result of two competing factors.
The free energy barrier for deposition of the first stem
increases withl, thus making the growth of thick crystals
prohibitively slow. However, aslmin is approached from
above, the thermodynamic driving force for crystallization
goes to zero.

It is important to note that by integrating overl, Eq. (2)
assumes that there are crystals with all values ofl greater
thanlmin which all grow with constant thickness and contri-
bute to the average�l. Those crystals with a thickness close to
the maximum inS(l)dominate this ensemble and contribute
more to Eq. (2) because of their rapid growth. As was
realized by Frank and Tosi [25], the results of experiments
where the temperature is changed during crystallization
argue against such an ensemble. The temperature jumps
give rise to steps on the lamellae, showing that a crystal
need not necessarily grow at constant thickness [26,27].

We will come back to this issue later, but in this section
we focus on the LH free energy profile. In particular, we
compare this theoretical profile with the ones computed
from simulations of a simple polymer [20]. In our model
the polymer is represented by a self-avoiding walk on a
simple cubic lattice. There is an attractive energy,2e ,
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Fig. 1. The free energy profile for the nucleation and growth of a new layer assumed by the LH theory. The inset is a schematic representation of a
configuration with three stems deposited.



between non-bonded polymer units on adjacent lattice sites
and between polymer units and the surface, and an energetic
penaltyeg for kinks (or ‘gauchebonds’) in the chain. The
parametereg determines the stiffness of the chains. In our
simulations, we have included a surface which represents
the growth face of a polymer crystal.

To follow the crystallization of the polymer on the
surface, we need to define an order parameter which deter-
mines the degree of crystallinity. We useNxtal, the largest
fragment of the polymer with the structure of a target crys-
talline configuration. In our case, we examine the crystal-
lization of a 200-unit chain into a structure with five stems
of length 40 units. In order to compare with the theoretical
profiles we have to constrain the otherN 2 Nxtal units in the
chain to be disordered. The simulations were carried out
using configurational-bias Monte Carlo [28], and the
umbrella sampling technique [29] was used to calculate
the free energy profiles.

The free energy profiles that we obtained are shown in
Fig. 2a. They show the expected temperature dependence: at
low temperature the crystal is most stable and at high
temperature the disordered state is most stable. Note that
the value of Nxtal for the disordered state is non-zero,
because the disordered polymer is adsorbed on the surface.
The adsorbed polymer is bound to have some short straight
sections that qualify as crystalline by the definition ofNxtal.
The free energy profiles also have a sawtooth structure
resembling that of the theoretical profile. The barriers
occur immediately after the previous stem has been
completed, and correspond to the formation of a new fold.
They are followed by a monotonic decrease in energy as this
new stem grows to completion. In the language of the LH
theoryC�Nstem! Nstem1 1� < 0 for Nstem $ 2: However,
there is no feature in the simulation profiles that corresponds
to the formation of the first fold. This is because the initial
nucleus is not a single stem, but two stems connected by a

fold that grow simultaneously. Such a possibility had
previously been suggested by Point [30].

Confirmation of a two-stem nucleus comes from a simple
model calculation of the free energy profile. We can write
the free energy as

A�Nxtal� � Acoil�N 2 Nxtal�1 kT
X

exp�2Extal=kT�; �3�

where the sum is over all possible crystalline configurations
that areNxtal units long,Extal is the energy of the crystalline
configuration, andAcoil is the free energy of an ideal two-
dimensional coil. The resulting profile is very similar to the
simulation profile (Fig. 2b). In particular, there is no feature
due to the formation of the first fold. However, when we
force the initial nucleus to be a single stem by restricting the
sum in the above equation to only those crystalline config-
urations with one incomplete stem, a free energy barrier
associated with the formation of the first fold appears. The
reason for the preference for a two-stem nucleus is simply
energetic. ForNxtal . 4eg=e 1 2, the two-stem nucleus is
lower in energy because of the interaction between the
two stems. Our simulations were performed on a surface
that was infinite. Whether a two-stem nucleus would be
expected, when, as with a lamellar crystal, the thickness
of the growth face is finite, depends upon how this critical
size compares to the thickness of the lamella.

It can be clearly been seen from Fig. 2b that the two-stem
nucleus significantly reduces the nucleation barrier. In parti-
cular, it will no longer be proportional tol. This has signifi-
cant implications for the LH theory given the key role
played by this initial free energy barrier in constraining�l
to a value close tolmin.

Before we move on we should make a number of
comments. First, the polymer model is very simple, and
although there is no obvious reason why the thermodynamic
reasons behind the two-stem nucleus should not also apply
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Fig. 2. Free energy profiles for the formation of a target crystal with five stems of length 40 units and adjacent reentry of the folds. In (a) the profiles have been
calculated from simulation, the labels give the temperature, and example configurations along the pathway have been illustrated. In (b) the profile has been
calculated atT � 2:75ek21 using Eq. (3) for pathways which allow one (1) or two (2) incomplete stems, as labelled.eg � 4e:



to a real polymer, there may be factors that are not included
in our model that come into play.

Second, the profiles reflect our choice of order parameter.
As we monitor crystallization unit by unit, during the
growth of the first two stems the lateral surface energy is
paid for at the same time as the free energy of crystallization
is released. Therefore, in this size rangeC is effectively
equal to one, albeit with the possibility of a two-stem
nucleus. Hoffman, however, advocates aC � 0 version of
the LH theory—it has the advantage that it avoids a ‘d l-
catastrophe’ (a divergence of the lamellar thickness) at large
supercooling—in which he postulates that prior to crystal-
lization an aligned physisorbed state is formed that has lost
its entropy but not yet gained the free energy of crystalliza-
tion [9]. Such a state cannot occur in our lattice model
because there is no difference in the interaction with the
surface for a disordered chain adsorbed on the surface and
a crystalline layer. In an off-lattice model the interaction
energy for the crystalline layer would be greater because
the stems would fit into the grooves provided by the stems
of the previous layer.

Third, a good order parameter must pass continuously
through intermediate values when the system goes between
two states. However, one can imagine a number of mechan-
isms by which this criterion forNxtal is broken. For example,
in a realistic simulation of the surface crystallization of a
long alkane into a once-folded configuration, the chain first
formed non-adjacent crystalline stems connected by a loose
fold which then came together by the propagation of a

defect through one of the stems [18]. Another possibility
that has been observed in simulations is the formation of
crystallites in different portions of a chain that subsequently
coalesce to form a single crystallite [15,19].

3. A multi-pathway model

In the previous section, in order to compare the LH free
energy profile with those from simulation, we had to
constrain theN 2 Nxtal units not having the target structure
to be disordered. If we had not done this, at temperatures
where the crystal is most stable the rest of the chain would
have formed a crystalline configuration with stem lengths
different from the target configuration. This naturally raises
questions about the LH assumption that the stems in a new
layer must all have the same thickness as the previous layer.
In this section, we examine the effects of relaxing some of
the LH assumptions by studying a model in which the stems
grow unit by unit and the length of a stem is unconstrained
[21,22]. We term it a multi-pathway model because it can
take into account the many possible ways that a new crystal-
line layer can form.

This idea is not new. Frank and Tosi [25], Price [31], and
Lauritzen and Passaglia [32] considered models where the
stem length is not always constant, and Point [33] and
DiMarzio and Guttman [34] studied models where the
stems could grow unit by unit. All these studies were
performed at a time when computational resources were
much less, so, approximations and simplifications had to
be made in order to render the models tractable. The natural
way to solve such problems, though, is through the use of
computational techniques, such as kinetic Monte Carlo.
However, the only applications of computational methods
to this problem were in a short note by Point [35] and the
continuation of this work in the PhD thesis of Dupire [36].
Some of the results presented in these earlier studies are
similar to those we report here.

In our model we grow a single new crystalline layer by
the successive growth of stems across a surface that repre-
sents the growth face of a polymer crystal. The polymer
interactions are the same as used in the previous section,
and we only model the crystalline portion of the polymer
explicitly—the rest is assumed to behave like an ideal coil.
An example configuration is illustrated in Fig. 3 along with
possible changes of configuration. These changes can only
occur at the ends of the crystalline portion, and are selected
using the kinetic Monte Carlo algorithm, in which a move is
chosen with a probability proportional to the rate for that
process.

First, we shall examine the effect of the initial nucleus on
the thickness of the layers grown. If the stem lengths are
unconstrained and the initial nucleus is a single stem, one
might imagine that one way of reducing the large initial free
energy barrier in Fig. 1 (and achieving faster initial growth)
would be for the stem length to increase gradually to its

J.P.K. Doye / Polymer 41 (2000) 8857–88678860

Fig. 3. An example of crystalline configuration during the growth of a new
layer on the surface of the growth face in the multi-pathway model. The
arrows indicate the five possible moves at the next step in the kinetic Monte
Carlo simulation. The dotted lines show the edges of the growth face.



average value as crystallization progresses. For this path-
way, the lateral surface free energy is paid for ‘in instal-
ments’ rather than all initially. This is exactly what we
observe when we force the initial nucleus to be a single
stem by only allowing growth from one end of the crystal-
line portion of the chain (Fig. 4a). When a double-stem
nucleus is allowed the initial growth is very different
because there is now no longer a large initial free energy
barrier to circumvent. The most important thing to note
from these results is that, contrary to the LH theory, the
thickness of the initial nucleus does not determine the thick-
ness of the layer. Further confirmation of this can be
obtained when we examine the growth from initial seed
crystals. Whatever the thickness of the initial seed, the

thickness of the growing crystal converges to the same
value (Fig. 4b). This implies that the thickness of a crystal-
line layer must be determined by factors which are operating
on the deposition of each stem and not that specific to the
initial stems.

To determine what these factors might be, in Fig. 5 we
show how the thickness of a new layer depends on tempera-
ture. First, it is immediately obvious that the thickness of a
new layer is not necessarily the same as that of the growth
face. Second, all the curves increase as the temperature
approachesTm, the melting or dissolution temperature,
because of the rise oflmin. Third, the thickness also increases
at low temperature, in this instance because it becomes
increasingly difficult to scale the free energy barrier for
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Fig. 4. The dependence of the average stem length on the distance of the stem from (a) the initial nucleation site, and (b) the centre of an initial crystal seed for
growth on an infinite surface atT � 2:75ek21

: In (a) growth starts with a single polymer unit on the surface and we consider the cases where growth is allowed
at one end or both ends of the crystalline configuration. In (b) the crystal seeds are three stems wide; the lengths of the stems in the seeds are as labelled.
eg � 8e:

Fig. 5. The temperature dependence of the average stem length in a new crystalline layer for growth of a single layer on growth faces of different thickness, as
labelled.



forming a fold, and so on average, the stems continue to
grow for longer. However, this rise is checked by the thick-
ness of the growth face. It is unfavourable for the polymer to
overhang the edge of the growth face because these units do
not interact with the surface.

Fig. 5 only describes the growth of a single layer.
However, as the thickness of the new layer is not generally
the same as the thickness of the growth face, one needs to
consider the addition of a succession of layers. If we assume
that all the variations in the stem length within a layer are

annealed out before a new layer begins to grow, this can be
achieved using Fig. 6a, in which we have plotted for a single
temperature the thickness of the new layer against the thick-
ness of the growth face. By following the dotted lines one
can see what would happen for growth on a growth face that
is 50 units thick: the first layer is 36 units thick, the second
28, the third 23,… Thus, the thickness converges to the
value l pp at which the curve crossesy� x; i.e. to the point
where the thickness of the new layer is the same as the
previous, and then the crystal continues to grow at this
thickness. The mapping represented in Fig. 6a is a fixed-
point attractor.

A similar picture emerges if we explicitly perform simu-
lations of multi-layer growth. Fig. 7 shows a cut through a
typical configuration that results. Within 5–10 layers the
thickness of the crystal converges to its steady-state value
l pp and then growth continues at that thickness.

The mechanism of thickness selection that occurs in our
multi-pathway is at odds with the LH theory. It shows that it
is inappropriate to compare the growth rates of crystals of
different thickness because the thickness has only one dyna-
mically stable value for which growth at constant thickness
occurs. The ensemble of crystals assumed by Eq. (2) is
fictitious. Furthermore, the growth rate of a new layer
slows down asl pp is approached from above (inset of Fig.
6a). However, we should note that in some of the multiple-
pathway studies [25,31,32] mentioned earlier, it was
realized that stable growth can only occur at the one thick-
ness where a new layer has the same thickness as the
previous. Since then this insight has for the most part
been neglected.

To analyse the reasons for the dynamical convergence of
the thickness to the valuel pp we examine how the probabil-
ity distributions for the stem length depend on the thickness
of the growth face (Fig. 8).lmin places one constraint on the
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Fig. 6. The dependence of the average stem length in a new crystalline layer on the thickness of the growth face for the growth of a single layer at (a)T �
2:75ek21 and (b)T � 3:375ek21

: The dotted lines show how the thickness changes on addition of successive layers to a 50-unit thick surface. The inset in (a)
shows the growth rate for the new layer as a function of the thickness of the growth face.

Fig. 7. Cut through a polymer crystal which was produced by the growth of
20 successive layers on a growth face with a uniform thickness of 50 units
at T � 2:0ek21

: The stems are represented by vertical cuboids. The cut is
16 stems wide.



stem length; only a small fraction of the stems can be shorter
thanlmin if the layer is to be thermodynamically stable. The
thickness of the growth face places the second constraint on
the stem length; it is energetically unfavourable for the
polymer to extend beyond the edges of the growth face.
There is also a third weaker kinetic constraint on the stem
length. At every step there is always a certain probability
that a fold will be formed. Therefore, even in the absence of
the second constraint, i.e. an infinitely thick growth face, the
probability distribution will decay exponentially to zero at
large stem length (Fig. 8a). Although, this effect prevents
the thickness from ever diverging in ad l-catastrophe
[33,34], it does not stop the thickness becoming very large.

When the growth face is significantly thicker thanlmin

there is a range of stem lengths betweenlmin and the thick-
ness of the growth face that are viable, and therefore the new
layer will be thinner than the previous layer. However, as
the thickness of the growth face decreases, the probability
distributions of the stem length becomes increasingly
narrow and the difference in probability between the stem
length being greater or less than the surface thickness
diminishes. Finally, atl pp, as the thickness of the growth
face approacheslmin, the probability distribution become
symmetrical about the surface thickness and the thickness
of the new layer becomes equal to the thickness of the
growth face (Fig. 8e). When the thickness is less thanl pp,
the asymmetry of the probability distribution is reversed
(Fig. 8f). It is, therefore, through the combined action of
the two thermodynamic constraints on the stem length that
the thickness converges to a value close tolmin.

The picture is not quite this simple at all temperatures. As

the supercooling decreases, it becomes increasingly unfa-
vourable for a stem to overhang the edge of the growth face.
Indeed, for sufficiently small supercooling, the probability
distribution for the stem length never becomes symmetrical
about the thickness of the growth face, not even when the
thickness of the growth face is close tolmin. This situation is
illustrated in Fig. 6b. After the growth of two layers on a 50-
unit thick surface, the crystal stops growing because the
outer layer is too thin for a new layer to form. For these
supercoolings, as in the SG model, the rounding of the crys-
tal profile inhibits growth. To overcome this barrier requires
a cooperative mechanism whereby a new layer takes advan-
tage of (and then locks in) dynamic fluctuations in the outer
layer to larger thickness. However, unlike the SG model, the
current model has no interlayer dynamics—we attempt to
grow a new layer on an outer layer that is static—and so
growth stops. Despite this it is clear that if this interlayer
dynamics could be included, it would again lead to steady-
state growth close tolmin.

We should note that this cessation of growth was also
found in the model of Frank and Tosi at low supercoolings
[25]. Lauritzen and Passaglia were also aware of this effect,
but they introduced an ad hoc energetic term in their rate
constants to prevent it [32]. However, in the restricted equi-
librium model of Price this effect was absent [31]. In this
study each new layer, but not the crystal as a whole, was
allowed to reach equilibrium and so the kinetic constraint on
the stem length is absent.

Finally, we should note that our multi-pathway model is
not parameter-free, and that, like most other models of poly-
mer crystallization (including the LH theory [8], the SG
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Fig. 8. Probability distributions of the stem length for a new crystalline layer grown atT � 2:75ek21 on a growth face of thickness: (a)∞; (b) 100; (c) 50; (d)
25; (e) 21; and (f) 19 units. The dashed vertical lines in the probability distributions are at the thickness of the growth face.
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Fig. 9. A schematic picture of a two-dimensional slice (perpendicular to the growth face) through a lamellar polymer crystal which forms the basis of the two-
dimensional version of the Sadler–Gilmer model. The three possible changes in configuration allowed by the model are shown (the dashed lines represent the
outline of the possible new configurations).

Fig. 10. The dependence of the thickness of a layer in the bulk of the crystal on the thickness of the previous layer atT � 0:95Tm: The dotted arrowed lines
show the thickness converging to the fixed point of the attractor from above and below.



model [23,37,38] and the earlier multi-pathway models
[25,31,32]), for some choices of parameters (not those
used here), the lamellar thickness begins to increase at suffi-
ciently large supercooling [22]. This effect occurs because
the large driving force for crystallization at large supercool-
ings reduces the effect that the thickness of the growth face
has in constraining the stem lengths.

4. The Sadler–Gilmer model

In this section we re-examine the model used by Sadler
and Gilmer in order to see whether the mechanism of thick-
ness selection that we found in the previous section for our
multi-pathway model also occurs in the SG model. Sadler
and Gilmer interpreted this model in terms of an entropic
barrier. In particular, they argued that the rounding of the
crystal profile gives rise to an entropic barrier, which can
only be surmounted by a fluctuation to a squarer profile
before growth can continue. As this barrier increases with
lamellar thickness it constrains the thickness to a value close
to lmin. However, we shall not dwell on this interpretation
here, but instead direct the interested reader to a critique of
this argument in Ref. [23].

In the SG model the growth of a polymer crystal results
from the attachment and detachment of polymer units at the
growth face. The rules that govern the sites at which these
processes can occur are designed to mimic the effects of the
chain connectivity. In the original three-dimensional
version of the model, under many conditions the growth
face is rough and the correlations between stems in the
direction parallel to the growth face are weak [10,39].
Therefore, an even simpler two-dimensional version of the
model was developed in which lateral correlations are

neglected entirely, and only a slice through the polymer
crystal perpendicular to the growth face is considered
[11,13].

The geometry of the model is shown in Fig. 9. Changes in
configuration can only occur at the outermost stem and
stems behind the growth face are ‘pinned’ because of the
chain connectivity. At each step, there are three possible
changes in configuration: the outermost stem can increase
in length, a new stem can be initiated and a polymer unit can
be removed from the outermost stem. The model can be
formulated in terms of a set of rate equations that can be
easily solved by numerical integration [11].

When we examine the dependence of the thickness of a
layer on the previous, we again find a fixed-point attractor
describing the convergence of the thickness to its steady-
state value (Fig. 10). Moreover, when we examine the prob-
ability distributions for the stem length we find evidence for
the same three constraints as for the multi-pathway model
(Fig. 11b). The weaker nature of the kinetic constraint is
particularly clear from the much more rapid exponential
decay of the probability for stems that extend beyond the
growth face. The role played by the two thermodynamic
constraints in the mechanism of thickness selection is parti-
cularly clear from Fig. 11b. As the thickness of the growth
face decreases, the viable range of stem lengths decreases
until the thickness of the growth face meetslmin at the fixed
point.

5. Discussion

In this paper we have outlined evidence from computer
simulations for a mechanism of thickness selection in lamel-
lar polymer crystal that differs from the theories of
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Fig. 11. (a) Probability distributions of the stem length in the bulk of the crystal given that the previous layer has the labelled thickness. (b) A contour plot of
the log of a series of such probability distributions. (Only thirty contours are displayed. The probability continues to fall rapidly in the blank topleft-hand
corner.) The fixed-point attractor has been overlaid on this figure to illustrate its connection to the probability distributions.T � 0:95Tm:



Lauritzen and Hoffman, and Sadler and Gilmer. Instead, the
mechanism has much more in common with the results of
earlier multi-pathway models [25,31,32]. We find that a
fixed-point attractor which describes the dynamical conver-
gence of the crystal thickness to a value just larger than the
minimum stable thickness,lmin. This convergence arises
from the combined effect of two constraints on the length
of stems in a layer: it is unfavourable for a stem to be shorter
thanlmin and for a stem to overhang the edge of the previous
layer. It is encouraging to note that we find the same
mechanism of thickness selection operating in two models,
which make very different assumptions about the micro-
scopic growth processes. This provides evidence of the
generality of this mechanism, and so suggests that, although
the models described here have a very simplified description
of the microscopic dynamics, the physical principles behind
the mechanism could be general enough to apply to real
polymers.

This mechanism of thickness selection is also consistent
with experiments where the temperature is changed during
crystallization [26,27]. The steps that result indicate that the
thickness of the lamellar crystals dynamically converges to
the steady-state thickness for the new temperature by a
mechanism similar to that which we observe in our simula-
tions. Furthermore, if the step profiles could be character-
ized with sufficient resolution by atomic-force microscopy,
it may be possible to extract the fixed-point attractor of a
real polymer. However, for a temperature decrease the step
profiles may also reflect the rounding of the crystal edge and
for a temperature increase the roughness of the fold surface
[24]. Furthermore, any annealing mechanisms that operate
could change the shape of the step profile from its as-formed
state.

Although the multi-pathway approach is, in some ways,
an extension of the LH theory, the removal of many of the
LH constraints leads to significantly different behaviour. In
particular, our work undermines the LH assumptions that
the initial nucleus determines the thickness of a layer, and
shows that the approach embodied in Eq. (2) (i.e. a compar-
ison of the growth rates of the crystals in an ensemble of
crystals of different thickness all of which grow at constant
thickness) is inappropriate because crystals of arbitrary
thickness do not necessarily continue to grow at that thick-
ness. Although our results lead us to question the thickness
selection mechanism in the LH theory, other aspects of the
nucleation approach may not be affected by our critique. For
example, the regime transitions are a result of the different
functional dependence of the growth rate on the nucleation
rate and the substrate completion rate in the different
regimes [9].

Recently, there have been a number of alternative theo-
retical proposals that have made recourse to metastable
phases. Keller and coworkers suggested that crystallization
of polyethylene could initially occur into the mobile hexa-
gonal phase. These crystals would then thicken until a criti-
cal thickness was reached at which a phase transition to the

orthorhombic phase would occur [40,41]. Olmsted et al.
have argued that the density fluctuations resulting from
the spinodal decomposition of a polymer melt [42] assist
the nucleation of crystals [43]. Strobl and coworkers have
argued, on the basis of the thickness dependence of the
crystallization and melting temperatures of syndiotactic
polypropylene, and the granular texture in AFM images of
the same polymer, that the polymer first crystallises into
blocks, which are subsequently stabilized when they fuse
into lamellae [44]. Our simulations can say little about these
proposals since our polymer models are too simple to be
able to capture such features. However, all these approaches
are based on behaviour that has been observed in crystal-
lization from the melt, so it is not clear how the ideas can
apply to crystallization from solution, where the same basic
laws for lamellar polymer crystals apply.
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